
Exploring the Jolla Phone
Chris Weedon (@crweedon) // Intrepidus Group 
Vitaly McLain (@send9) // Matasano 
Drew Suarez (@utkan0s) // Matasano



Why this talk?
!

• Explore an interesting phone

• Show different attack surfaces a phone can have


• Commonalities with mobile, Linux, ARM, etc

• Show how phone can be used for your purposes



Jolla: A History!
!

• Nokia developed Maemo 

• Then they merged it with Intel’s Moblin

• This became MeeGo 

• …and then they got rid of all Linux phones 

• Engineers + Nokia “Bridge” fund == Jolla Oy



From MeeGo to Sailfish OS

!
• Funding but no intellectual property 
• Mer == open-source MeeGo fork 
• Combine open-source: Mer + Wayland + QT5/QML  
• And proprietary: Silica (compliment to QtQuick), 

Lipstick (shell on top of Wayland) 
• Change .deb -> openSuSE RPM, apt -> zypper, 

upstart -> systemd

• We get Sailfish OS!



The Other Half

• Really neat “smart covers” called Other Half

• Ambiance / theme based on cover

• Keyboard, other peripherals, etc 

5



6



Jolla’s Boot/Recovery

• Structure 
• Inspecting the Firmware 
• Lock/Unlock 
• Thoughts



Structure

• Android style images for recovery 
• Android boot header 
• zImage and rootfs.cpio  

• Recovery consists of a few scripts 
• Menus/functions via script 
• Binary responsible for lock mechanism



Recovery / fastboot mode

• Access recovery with vol down + power at boot (no usb) 
• telnet based connection 
• menu system of shell scripts 

• Access fastboot with vol down + power at boot (w usb) 
• needs identifier 0x2931 (fastboot -i 0x2931) 
• not all args supported, locked by default



What are we after?

• Understanding the image type 
• Device topologies 
• Ramdisk contents



utkanos@leviathan ~/jolla $ od -c mmcblk0p21.img | more 
0000000   A   N   D   R   O   I   D   !   0   H   ]  \0  \0 200     200 
0000020 257 022   6  \0  \0  \0     202  \0  \0  \0  \0  \0  \0 020 201 
0000040  \0 001     200  \0  \b  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0 
0000060  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0 
0000100   i   n   i   t   =   /   s   b   i   n   /   p   r   e   i   n 
0000120   i   t       r   o   o   t   =   /   d   e   v   /   m   m   c 
0000140   b   l   k   0   p   2   8       r   o   o   t   f   s   t   y 
0000160   p   e   =   b   t   r   f   s       r   o   o   t   f   l   a 
0000200   g   s   =   r   e   c   o   v   e   r   y       n   o   i   n 
0000220   i   t   r   d       a   n   d   r   o   i   d   b   o   o   t 
0000240   .   h   a   r   d   w   a   r   e   =   q   c   o   m       u 
0000260   s   e   r   _   d   e   b   u   g   =   3   1       e   h   c 
0000300   i   -   h   c   d   .   p   a   r   k   =   3       m   a   x 
0000320   c   p   u   s   =   2  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0 
0000340  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0 
!



binwalk



mkboot



Topology

• ‘mount’ and /proc/partitions 
• /dev/block/platform/[soc]/by-name 
• ramdisk contents



lrwxrwxrwx 1 root root  22 2014-10-18 23:40 aboot -> ../../../../mmcblk0p17 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 boot -> ../../../../mmcblk0p20 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 drm -> ../../../../mmcblk0p19 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 emgdload -> ../../../../mmcblk0p1 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 fsg -> ../../../../mmcblk0p8 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 misc -> ../../../../mmcblk0p23 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 modem -> ../../../../mmcblk0p18 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 modemst1 -> ../../../../mmcblk0p10 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 modemst2 -> ../../../../mmcblk0p11 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 pad1 -> ../../../../mmcblk0p22 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 persist -> ../../../../mmcblk0p25 
lrwxrwxrwx 1 root root  21 2014-10-18 23:45 Qcfg -> ../../../../mmcblk0p4 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 Qdlog -> ../../../../mmcblk0p5 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 Qfa -> ../../../../mmcblk0p3 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 Qglog -> ../../../../mmcblk0p9 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 Qlogfilter -> ../../../../mmcblk0p7 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 QOTP -> ../../../../mmcblk0p2 
lrwxrwxrwx 1 root root  21 2014-10-18 23:40 Qvariables -> ../../../../mmcblk0p6 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 recovery -> ../../../../mmcblk0p21 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 rpm -> ../../../../mmcblk0p16 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 sailfish -> ../../../../mmcblk0p28 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 sbl1 -> ../../../../mmcblk0p12 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 sbl2 -> ../../../../mmcblk0p13 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 sbl3 -> ../../../../mmcblk0p14 
lrwxrwxrwx 1 root root  22 2014-10-18 23:54 security -> ../../../../mmcblk0p27 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 ssd -> ../../../../mmcblk0p26 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 swap -> ../../../../mmcblk0p24 
lrwxrwxrwx 1 root root  22 2014-10-18 23:40 tz -> ../../../../mmcblk0p15



 179        0   15267840 mmcblk0 
 179        1       4079 mmcblk0p1      emgdload 
 179        2      32768 mmcblk0p2      QOTP 
 179        3       4096 mmcblk0p3      Qfa 
 179        4       4096 mmcblk0p4      Qcfg 
 179        5       4096 mmcblk0p5      Qdlog 
 179        6       2048 mmcblk0p6      Qvariables 
 179        7       2048 mmcblk0p7      Qlogfilter 
 179        8       4096 mmcblk0p8      fsg 
 179        9      49152 mmcblk0p9      "SYSLOG" 
 179       10       4096 mmcblk0p10     modemst1 
 179       11       4096 mmcblk0p11     modemst2 
 179       12       2048 mmcblk0p12      SBL1 
 179       13       2048 mmcblk0p13      SBL2 
 179       14       2048 mmcblk0p14      SBL3 
 179       15       2048 mmcblk0p15      trustzone 
 179       16       2048 mmcblk0p16      rpm 
 179       17       2048 mmcblk0p17      aboot 
 179       18      65536 mmcblk0p18     "FIRMWARE" 
 179       19       8192 mmcblk0p19     "DRM" 
 179       20      12288 mmcblk0p20     12MB (GOOD TARGER FOR K/R) KERNEL 
 179       21      12288 mmcblk0p21     12MB (GOOD TARGET FOR K/R) RECOVERY 
 179       22       8192 mmcblk0p22     pad1 
 179       23       8192 mmcblk0p23     misc 
 179       24     520184 mmcblk0p24     "SWAP" 
 179       25       8192 mmcblk0p25     "PERSIST" 
 179       26          8 mmcblk0p26     ssd 
 179       27       8192 mmcblk0p27     "SECURITY" 
 179       28   14415855 mmcblk0p28     "HOME /"



Device lock

• Set in userland via system settings 
• Protects recovery shell and boot loader 
• mmcblk0p27 (security partition) 

• header shows lock/unlock status 
• EVP_SHA1() and HMAC of pin code…





mmcblk0p27 (locked, unlocked)



Quirks

!
• 5 attempts at pin code, then throttled 

• After 5 wrong pins, a file is written to 
ramdisk 

• a reboot clears it (not surprising)



mmcblk0p6 (after bootloader unlock)

[root@Jolla nemo]# od -c p6_postblunlock.img !
0000000  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0!
*!
0010240  \0  \0  \0  \0   d   f   s   c   k  \0  \0  \0  \0  \0  \0  \0!
0010260  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0!
*!
0010660  \0  \0  \0  \0  \0  \0  \0 377 377 377 377 377  \0  \0  \0  \0!
0010700  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0!
*!
0047500  \0  \0  \0  \0  \0   K   1   2   C   o   L   N   u   O   e   M!
0047520  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0  \0!
*!
10000000



Image signing?

• lk is patched in 1.1.0.38 (Uitukka) 
• Fixes RSA cube root attack on signature 
• Currently images are not signed…



Thoughts

• If you have a Jolla, enable device lock and 
developer mode! 

• not an ideal security model 
• at least some protection 

• Interesting mix of different software may 
expose additional issues later on 

• Init scripts? :)



Operating System

• Many interesting binaries on the device

• A lot of test binaries and applications left intact


• Not sure if this is a result of enabling developer mode or if 
this is stock


• Ex: qseecomd_security_test, oemwvtest, StoreKeybox

!

• Attack surface is potentially huge, but gets small quickly.

• Virtually no listening services other than DHCP, so remote 

attack surface is small from a network perspective.

• Leaves plenty of room for vulnerable applications



Operating System
• You say you want security? Sandboxing, ASLR, RELRO, PIE, NX, 

etc?

• Nope… not here, Well, some of it is (see next page)

• As of now, the system relies heavily on *nix USER/FS 

permissions

• Which isn’t bad… it’s just not great

• There are plans to implement these things in the future 

though…



Operating System

• No Kern Heap 
Hardening


• No grsec/PaX

• No user copy checks

• No enforcement of 

read-only



Operating System

• CPU NX bit support? -- Nope

27



Operating System

• Stack canaries? RELRO? PIE?

• Some but not all



Application Layer
• Stock Applications


• Most Applications are written in C/C++

• Although there are lots of shell scripts on the device


• Mix of ELF32 Arm7vh binaries and QML “applications”, I’m 
using application here very loosely 


• Often, the binaries have QT API calls embedded in them 
that leverage the QML “applications”.


• Picture the binary as the service, and the QML as the GUI

• What is QML? 


• QT Meta Language or QT Modeling Language

• It’s like Javascript, Openscad, Python, and Latex all rolled into one

• Used to describe what something will look like, and the action 

that thing will perform



QML

• What is QML?(2)



The Userland
• All regular apps run as 

“nemo” (there’s one exception)

• That’s how you access phone, too

• Use SSH via USB or network in dev 

mode



Attack Surface: Userland

!
• Some binaries as root via invoker 

• And there are some suids/sgids

• Interesting: owned by root or gid == privileged 

• Interested in binaries NOT common to other 
Linux distros (Sailfish/Mer/Maemo binaries?)



D-Bus

• D-Bus used for IPC

• Common to other Linux environments

• …but everything runs as “nemo”

• dbus-monitor provided, acts as sniffer

• Regular user discovered Outlook passwords

• Interesting area to explore further




34



A few interesting binaries…

• /usr/bin/simkit [sgid privileged] – New-er. Research 
ongoing ☺ 

• /usr/bin/csd [suid root/gid disk] – Diagnostic utility (can 
also be triggered via *#*#310#*#* on dialer). Neat by 
itself. 

• /usr/libexec/mapplauncherd/booster-silica-qt5 [suid root] 
– Used to support Silica extensions, uses maplauncherd


• /usr/bin/devel-su [suid root] – Custom SU. Written in C! 
No stack canaries or PIE



But what to do?

• Readelf, objdump, gdb, gdbserver available or 
install via pkcon (alternate repos available!)


• Memory corruption would be nice 

• Fuzz input 

• Fuzz environmental variables 

• Get more intelligent ☺

• But it’s also very dangerous for suids to shell out 

• We should look for system() and popen(), right?



Oh wait, C++ and QT
[nemo@Jolla ~]$ ls -al /usr/bin/csd

-rwsr-sr-x 1 root disk 140572 2014-05-21 13:52 /usr/bin/csd

[nemo@Jolla ~]$ readelf -a /usr/bin/csd | grep system

[nemo@Jolla ~]$ readelf -a /usr/bin/csd | grep popen

[nemo@Jolla ~]$ readelf -a /usr/bin/csd | grep QProcess

99: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcess15waitForFini

   113: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcess21readAllStan

   143: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcessC1EP7QObject

   149: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcess5startERK7QSt

   166: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcess7executeERK7Q

   170: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcessD1Ev

   235: 00000000     0 FUNC    GLOBAL DEFAULT  UND _ZN8QProcess5startERK7QSt





39



Tried to have this executed…
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>
!
int main(int argc, char **argv) {
!

 setuid(0);


 setgid(6);
!

 FILE *f = fopen("flag", "w");
!

 fprintf(f, "UID, EUID: %d, %d\n", getuid(), geteuid());
!

 fclose(f);
!

 return(0);

}



Looked promising…
$ env PATH=.:$PATH /usr/bin/csd!
[D] QWaylandEglIntegration::QWaylandEglIntegration:58 - Using Wayland-EGL

[W] QQmlImportDatabase::importPlugin:1697 - Module 'Sailfish.Silica' does not 
contain a module identifier directive - it cannot be protected from external 
registrations.

[D] FactoryUtils::getFlags:94 - FILE   said: "4436"

[D] FactoryUtils::isVerified:123 - Head =  "4436"

[D] FactoryUtils::writeCsdResults:55 - writeCsdResults: 
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000"

DeclarativeCoverWindow: I have a default alpha buffer

[D] FactoryUtils::writeCsdResults:55 - writeCsdResults: 
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000"

Clicked 28

[D] SdCardTest::getSdCardPath:49 - sdpath =  "/run/user//media/sdcard"



Nope ☹

• Content of “flag”: UID, EUID: 100000, 100000 
(nemo) 

• Drops privs

• Probably bash priv mode?



Turns out…

• Only doesn’t drop privs for a few functions

• chmod()’s a few thing in /sys

• Not much you can do other than disable a 

charger…







Shellshock

• It was vulnerable 

• Couldn’t find anything to use it on: nothing 
suid loaded env vars, dhclient not in use 

• Maybe missed opportunity with some binaries 
that run from invoker. Or CSD. 

• Patched in latest hotfix 



What about the kernel?

# lsmod!
Module                  Size  Used by

wlan                 2592646  0

cfg80211              144905  1 wlan!
!
# uname -a

Linux Jolla 3.4.91.20140612.1 #1 SMP PREEMPT Mon Jun 16 17:24:16 UTC 2014 armv7l 
armv7l armv7l GNU/Linux



Patched for most modern CVEs

$ for ((i = 39; i <= 150; i++)); do ./trigger_sock_diag 
$i; done

Sending with family 39

Sending with family 40

Sending with family 41

Sending with family 42

Sending with family 43

Sending with family 44

Sending with family 45

Sending with family 46

…..



Attacking Sailfish users

• Mapping out attack surface 
• One possibility: /usr/bin/jolla-settings 

parses VCF (vCard) files 
• No crashes yet!



Pentesting Applications

• Traffic can be captured as easily as on any other Linux 
system 

• Setup proxies for HTTP/HTTPS connections(we all 
know how to do that) 

• Create your own IPTables rules and scripts to forward 
anything wherever you want 

• Get Dynamic: Fashion Scripts, to load rules when 
certain applications run



More on proxying

• Browser traffic: .js file 

• General traffic: long-hold WiFi SSID, click Edit

• Cert pinning (or client-side certs?) - Store, Updates

• Weirdness: if you check for updates, the actual 

updates are NOT cert pinned (snagged the RPMs this 
way)


• As an aside: it sends your Jolla creds with a hashed 
password


• Installing CA cert (like Burp’s) is easy. Look online.

• put in /etc/pki/tls/certs/

• run multi_c_rehash



Third-Party Apps

• 3rd Party Apps 
• We reached out to Jolla to ask them what 

the lifecycle was like. 
• They seemed unsure of what we were asking… 



Pentesting Applications

• Sailfish Quirks…

• Everything is run through ‘invoker’

• invoker was primarily designed to boost app 

startup times and save device memory

• Also invoker handles Group and User Privs, such 

as access to the credentials store or contacts DB

• What is Invoker really?


• Turns out invoker is basically just a wrapper to 
‘mapplauncherd’


• The invoker binary takes the app name and a 
default set of options in the invoker binary and 
passes them to mapplauncherd



Pentesting Applications

• It’s similar to pentesting any linux system 
application: 

• Evaluate File Permissions 
• Use Old Friends like: 

• GDB 
• LDD 
• Strace 
• Strings 
• Etc… 
• Then find the location of the applications QML files and it’s code 

review time



Pentesting Applications

• Android Hotness/Alien Dalvik

• Alien Dalvik system is proprietary Myriad Group tech.

• Binaries and libraries located in the ‘/system/’ folder

• Every Android app runs as a different user (user id > 10000)

• Virtual to physical memory mapping controlled through ‘/usr/bin/

vmtouch’

• Vmtouch loads the system libraries and android libraries so your hardware 

works for both native and android apps seamlessly

• Runs as root!


• Communications for apps to the Sailfish OS and hardware done 
through the android-bridge(‘/opt/alien/system/genv/bin/
alien_bridge_server’)


• A new bridge is stood up for each app that is launched



Pentesting Applications
• Android Hotness/Alien Dalvik(cont)


• Also runs as root!

• Potential for malicious app disaster? You bet!


• Possible attack vectors:

• Remap huge chunks of memory

• Request the android bridge to access system devices 

as root

• Request the android bridge to access anything as root


• Mitigations in place?

• Only the linux user and file permissions stand in your 

way.

• (cause those have never been bypassed…. Ever… 

right?) ;-)



Pentesting Applications

• Additional applications of the Alien 
Dalvik?


• Obfuscated android app analysis!!

• Ever mess with “kony” apps?

• WTF is “kony”? 

No, not this guy…



Pentesting Applications

• Lua bytecode VMs built into apps… in short, it sucks to analyze

• This is cool, like seriously cool, why you ask?


• Traditional Android app analysis is mostly about fighting against the 
phone


• Uses a top-down approach

• How Alien Dalvik helps?


• Using a bottom-up approach, and working with the phone’s built in 
developer tools we can easily access all the information about the 
application



Pentesting Applications
• Simplest way to use this bottom-up 

technique

• Launch your app on the phone

• Find the PID in the dev mode shell

• Find the memory map for the PID

59



Pentesting Applications

• Use GDB to dump all the memory ranges



Pentesting Applications

• Transfer the memory dumps back to your 
host machine


• Reassemble the dumps, and analyze

• Binwalk

• Strings

• Hexeditor

• etc

61





Other Half: NFC

• NFC sticker tells phone what theme to 
download 

• NFC radio only active when switched pressed 

• Sticker is standard MiFARE Ultralight

• Handled by tohd daemon 

• NFC stack in N9 fuzzed by Charlie Miller, no 
results. Different in Sailfish?





Other Halves
• I2C Port 

• Start by downloading the TOH Developer Kit: 
• Realize that is useless for I2C stuff 
• Develop your own methodology 

• Where my I2C fuzzers at google? 
• Seems like no one has ever bothered to fuzz I2C 
• Start by writing the dumbest I2C fuzzer ever 

• Materials: 
• Bus Pirate (Wanted to implement on an FPGA but my VHDL/
Verilog is garbage) 

• Logic Analyzer 
• Jolla in Developer Mode 
• GDB 
• Python(pyBusPirate)



Other Halves

• I2C pins expanded



The Other Half
!

• Terrible test rig ☺ 



The Other Half

• Implement Dumb Fuzzer to send I2C data 
through Bus Pirate


• Hook up the logic analyzer to ensure the packets 
you think you’re sending are being sent


• Monitor Phone and Processes to see what happens

• Nothing happens


• Investigate



The Other Half: I2C
• Turns out, the phone has an Other Half Switch

• This switch *briefly* activates the I2C poll mechanism



The Other Half: I2C
• Figure out a way to bypass the Other Half Switch


• Toggle switch by hand with wooden stick

• Then repeat previous testing process


• Still… nothing happens…

• The Jolla I2C port is designed to run in Master Mode, 

not Master/Slave.

• This means our fuzzer needs to get a bit smarter, 

and wait for the initialization poll before firing of it’s 
data


• Future Work. Rewrite the fuzzer to be smarter, 
iterate through single client and multi-client 
communications



Taking it Further
• Jolla PwnPhone?


• This used to be easily done.

• Neildk repo from open repos was nearly all that 

was needed

• Everything else would need to be cross compile 

from the emulator or built on the device

• Either way that’s a pain in the A$$


• However… Then update 1.0.8.19 came out…

• Implementation of Polkit

• Disallowed installation of apps from sources that 

didn’t have a polkit config



Taking it Further

• WTF is polkit?

• Also known as policy kit.

• It’s a component for controlling system-wide 

privileges in *NIX systems

• How does this effect your pwnphone plans?


• Zypper(used for the open-repos packages) 
needs to implement proper polkit API calls in 
order for packages to properly install



Jolla PwnPhone (quick and dirty)

• No need to actually bypass polkit

• backup your data

• revert back to factory image

• install the open-repos

• re-upgrade the firmware



Jolla PwnPhone



Taking it Further

• Hardening the Jolla/Sailfish

• Building Hardened Kernels


• Technically, Jolla is already working on this

• I think if they crowd-sourced this, it’d move much faster


• Difficult due to lack of sources available, QCOM, NDA 
stuff, etc…


• However since the Bootloader is easily Unlocked…

• Attempt at your own risk

• Lots of information on the Maemo and Nemo Mobile 

sites



But.. where are the bugs?

• Why were there no bugs disclosed in your 
presentation? So Jolla has no bugs?


• Fairly well designed, but no claims about 
lack of bugs


• Will work with Jolla on anything we find — 
great company to work with so far!



Thank you!

Questions? Comments? Complaints?


